麻豆传媒6月瑜伽md0073|91mcool制片厂|麻豆文化影视传媒入口|国产 网红 精品|萝莉社免费在线|蜜芽swag麻豆传媒在线观看|免费电影av|麻豆影视传媒免费版|国产麻豆高清精品|内衣办公室无修,91.九色熟女,藩甜甜91制片厂,台湾swag沐沐麻豆传媒视频

您所在位置: 首頁 > 通知公告 > 正文

經(jīng)濟(jì)學(xué)院講座信息——以色列特拉維夫大學(xué)David Schmeidler教授

來源:                   發(fā)布時(shí)間:2018-09-17

講座主題:Desirability:uncertainy via state of world,,axioms and rationality

主講人:David Schmeidler 教授

主持人:胡亦琴 教授

時(shí)間: 2018年9月21日(周五)10:00-11:30

地點(diǎn):經(jīng)濟(jì)學(xué)院(6號(hào)樓)210

主辦單位:浙江省一流學(xué)科“理論經(jīng)濟(jì)學(xué)”、經(jīng)濟(jì)學(xué)院

主講人簡介:

David Schmeidler教授,,著名經(jīng)濟(jì)學(xué)家,、數(shù)學(xué)家。以色列特拉維夫大學(xué)商學(xué)院教授,。以色列國家科學(xué)院(Israel Academy of Sciences and Humanities)院士,、美國藝術(shù)與科學(xué)院(American Academy of Arts and Sciences)外籍榮譽(yù)院士、計(jì)量經(jīng)濟(jì)學(xué)會(huì)(Econometric Society)會(huì)士,、高等經(jīng)濟(jì)理論學(xué)會(huì)(Society for the Advancement of Economic Theory)會(huì)士,、博弈論學(xué)會(huì)(Game Theory Society)會(huì)士等。并于2014-2016年出任博弈論學(xué)會(huì)主席,。

Schmeidler教授畢業(yè)于耶路撒冷大學(xué),,師從諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)獲得者RobertAumann。其先后任教于美國加州伯克利大學(xué),、美國俄亥俄州立大學(xué)以及以色列特拉維夫大學(xué),。主要研究領(lǐng)域?yàn)榻?jīng)濟(jì)理論,包括決策論,、博弈論,、機(jī)制設(shè)置及社會(huì)選擇理論。在奈特式不確定環(huán)境下,,他首次提出非可加性概率模型及多重概率模型,,開創(chuàng)了非貝葉斯學(xué)派。該學(xué)派的創(chuàng)立,,不僅**了貝葉斯學(xué)派在傳統(tǒng)經(jīng)濟(jì)學(xué)中的核心地位,,也創(chuàng)立了經(jīng)濟(jì)學(xué)理論研究的新范式,。如今,非貝葉斯理論的核心思想已經(jīng)超越了理論本身,,被廣泛應(yīng)用于金融,、管理、宏觀經(jīng)濟(jì)等各個(gè)領(lǐng)域,,對于經(jīng)濟(jì)政策及經(jīng)濟(jì)實(shí)踐產(chǎn)生了深遠(yuǎn)的影響,。迄今為止,Schmeidler教授已在國際頂級(jí)經(jīng)濟(jì)學(xué),、數(shù)學(xué)期刊上發(fā)表論文百余篇,。

內(nèi)容摘要:

The subjective probability of a decision maker is a numerical representation of a qualitative probability which is a binary relation on events that satisfies certain axioms. We show that a similar relation between numerical measures and qualitative relations on events exists also in Savage's model. A decision maker in this model is equipped with a unique pair of probability on the state space and cardinal utility on consequences, which represents her preferences on acts. We show that the numerical pair probability-utility is a representation of a family of desirability relations on events that satisfy certain axioms. We first present axioms on a desirability relation defined in the interim stage, that is, after an act has been chosen. These axioms guarantee that the desirability relation is represented by a pair of probability and utility by taking for each event conditional expected utility. Weacterize the set of representing pairs by measuring the optimism of probabilities on consequences and the content of utility functions. We next present axioms on the way desirability relations are associated ex ante with various acts. These axioms determine the unique pair of probability and utility in Savage's model.

關(guān)閉